

WASC Accreditation Educational Effectiveness Review

Bachelor's in Mechatronics Engineering. The program is currently offered in the following Campi: Mexicali, Tijuana and Ensenada.

Last Program Review: August 2005

Table of Contents

 Introduction Denomination and description of the academic program Educational objectives of the academic program Learning outcomes of the program and metrics for assessment Curriculum of the academic program and faculty resources Curricular mapping Assessment plan 	3 4 6 7 9 10 12
7. Assessment plan	12

1. Introduction.

The Mission of the Bachelor's in Mechatronics Engineering Program is to generate highly qualified professionals with profound knowledge of select fundamentals in materials, manufacturing processes, automation and industrial robotics, that are able to develop a successful professional life within the manufacturing industry as an employee or independent professional.

The Vision of the Bachelor's in Mechatronics Engineering Program is be the primary source in the region for professionals that provide solutions that require the applied knowledge of materials, manufacturing processes, automation and industrial robotics.

The Bachelor's in Mechatronics Engineering Program was launched in the Mexicali Campus in 2005, in the Tijuana Campus in 2006, and in the Ensenada Campus in 2005. The program has not yet undergone major reviews and it's first graduating class will finish in 2009.

2. Denomination and description of the academic program.

The Bachelor's in Mechatronics Engineering Program is focused on the following Primary Areas of Knowledge, also called Professional Formation Lines:

- a) Mechanical Design.
- b) Manufacturing.
- c) Electronics.
- d) Control.
- e) Computer Systems.

To obtain the degree, a student must complete the following requirements:

- Accreditation of 42 courses (totaling 328 credits).
- Completing 400 hours of professional practice.
- Completing 500 hours of social service.
- Completing the corresponding EGEL examination administered by CENEVAL.
- Completing any of the degree obtainment requirements established by CETYS University.

The program has chairs by campus, who are full time faculty that are in charge of the program, and are involved in enrollment and promotional activities, student guidance and alumni follow up, program review, accreditation projects, etc. The program has chairs in the Mexicali Campus and Tijuana Campus, and none in the Ensenada Campus because only half of the program is offered there. The chairs are:

- M.S. Cristóbal Capiz Mexicali Campus.
- M.S. Roberto Salas Tijuana Campus.

The Academy of Mechatronics Engineering is currently comprised by faculty that are members of Academy of Electronic Cybernetics Engineering and the Academy of Mechanical Engineering:

- M.S. Cristóbal Capiz Mexicali Campus
- M.S. Jorge Sosa López Mexicali Campus
- M.S. Bernardo Valadez Mexicali Campus
- M.S. Roberto Salas Tijuana Campus
- Dr. Carlos Fuentes Ensenada Campus

The students of the program are full time, primarily male and local, and most of the students receive some sort of financial aid, the primary one being the Pro-Engineering scholarship. Students enrolled in the Ensenada Campus do the first four semesters in the Ensenada Campus and finish the last four semesters either in the Mexicali Campus or Tijuana Campus.

The program currently has the following laboratories by campus:

- Mexicali: Physics, General Electronics, Mechatronics, Networks and Operating Systems, Machine Shop, Thermodynamics.
- Tijuana: Physics, General Electronics, Mechatronics, Networks and Operating Systems, Machine Shop, Thermodynamics.

Student population - Mexicali							
Semesters Male Female Total							
1 and 2	18	2	20				
3 and 4	20	5	25				
5 and 6	16	4	20				
7 and 8	1	0	1				
Total	55	11	66				
Percentage	83.3%	16.7%	100%				

Student population - Tijuana							
Semesters Male Female Total							
1 and 2	37	4	41				
3 and 4	23	4	27				
5 and 6							
7 and 8							
Total	60	8	68				
Percentage	88.2%	11.8%	100%				

Student population - Ensenada							
Semesters	Male	Female	Total				
1 and 2	13	0	13				
3 and 4	7	2	9				
5 and 6	5	0	5				
7 and 8							
Total	25	2	27				
Percentage	92.5%	7.5%	100%				

August – December 2007 (SIA-CETYS)

3. Educational Objectives of the academic program.

The Educational Objectives that the Academy of Mechatronics have established for the Bachelor's in Mechatronics Engineering are the following:

- The graduate from this program will make at least one proposal to an industry for the automation of a production system.
- The graduate from this program will improve an existing manufacturing process by the means of the integration of electronic, pneumatic, etc. elements.
- The graduate of this program will integrate, install, probe, and assure the means of operation of electronic and/or mechanical based systems.
- The alumni from this program will be able to pursue graduate studies with success.
- The alumni from this program will be able to find a professional job within 6 months after graduation.
- The graduate from this program will be able to start his/her own business.
- The graduate from this program will be able to fill middle or top manager positions with in 3 years after graduation.

These Educational Objectives will be the primary focus for alumni studies and follow up, which will be used for various purposes during the assessment cycle, as well as program review.

4. Learning outcomes of the program and metrics for assessment.

There are 5 Learning Outcomes for all Engineering Bachelor's Programs that have been established by the Academies of the Engineering College, that describe knowledge, abilities and attitudes that every engineering student must achieve by the end of the academic program. These are:

The student of a CETYS University Bachelor's in Engineering Program will...

- SLO_ENG1: ...correctly apply to engineering, the tools provided by the basic sciences, such as physics, calculus, probability, statistics and programming to the solution of diverse problems.
- SLO_ENG2: ...design analytic and functional models, quantitatively and qualitatively, for the analysis and improvement of systems for diverse applications.
- SLO_ENG3: ... effectively use software tools and technologies to build solutions to engineering problems.
- SLO_ENG4: ... effectively design and manage projects.
- SLO_ENG5: ... (Clear and effective communication in English) ... be able to express his ideas clearly and with an appropriate language, in a verbal, written, and visual way in English.

The Learning Outcomes that the Academy of Mechatronics Engineering have established for the Bachelor's in Mechatronics Engineering are the following:

The student of the Bachelor's in Mechatronics Engineering program will be able to...

- SLO_IMECA1: ... design, implement and maintain the control and/or the automation systems in a manufacturing system by the usage of sensors, programmable logic controllers and actuators.
- SLO_IMECA2: ... integrate computer systems to supervise, data acquisition and production control in manufacturing ambiances.
- SLO_IMECA3: ... design, build, install and program robots for manufacturing.
- SLO_IMECA4: ... design, select materials, machining and test mechanisms using numerical control equipment or basic metal-mechanic shop equipment.

The above student learning outcomes are a work in progress and are a part of the assessment cycle and program review, however we are just beginning to understand and develop tools to measure them.

#	Student Learning Outcomes	Metrics to evaluate student performance	Evidence of achieved learning
1	SLO_ENG1	Currently the system that is in place to evaluate student performance is a scale of 0 to 100, where	Student Work and Final Projects from selected courses (i.e.
2	SLO_ENG2	a grade above 70 is considered as "passing" and below as "failing".	Physics II and III, Statistical Inference, Programming Methods
3	SLO_ENG3	developed to evaluate these learning outcomes.	EGEL Examination (Basic Sciences areas)
4	SLO_ENG4	of Basic Sciences in conjunction with the other Academies of the Engineering College.	
5	SLO_ENG5	This learning outcome is measured by the English Language Center (ELC) using appropriate performance standards for the study of ESL.	Student work follow up administrated by ELC.
7	SLO_IMECA1	Currently the system that is in place to evaluate student performance is a scale of 0 to 100, where	Student Work and Final Projects from selected courses.
8	SLO_IMECA2	a grade above 70 is considered as "passing" and below as "failing".	Employer reports from professional practice and social
9	SLO_IMECA3	being developed by the Academy of Mechatronics Engineering.	Service activities.
10	SLO_IMECA4		

The Academy of Mechatronics Engineering has the following members:

Name	Name of the Academy or Faculty Coop: Academy of Mechatronics Engineering.								
#	Name	Degree	Area of knowledge	Campus					
1	Cristóbal Capiz	Master's in Science	Digital Design	Mexicali					
2	Jorge Sosa López	Master's in Science	Process Control	Mexicali					
3	Bernardo Valadez	Master's in Science	Mechanical Design	Mexicali					
4	Roberto Salas	Master's in Science	Physics	Tijuana					
5	Carlos Fuentes	Doctorate	Process Control	Ensenada					

5. Curriculum and faculty resources.

Bachelor's in Mechatronics Engineering											
Semester	1	2	3	4	5	6	7	8	Full time faculty		
									Name	Degree	Area
Fundamentals for	MA400	MA401	MA402	MA407	MA406				Alfredo Rodriguez	M.A.	Math, Stat
Engineering	CC400	CC402	MA403	MA404					Salvador Baltazar	M.S.	Math, Phis Mah, Phis
		FI400	FI401	FI402					Susana Dominguez	M.S.	Math, Phis
		MC400							Isaac Azuz	Dr.	Math, Stat
Professional Formation in	CE058	MF400	MF401	MF402	MC410	CE061	CE062	CE065	Cristóbal Capiz	M.S.	Digital Design
Mechatronics Engineering				MC402	CE059	MC407	CE063	CE064	Jorge Sosa López	MS	Process
Lightering				WICHUZ	GE000	1010407	CLUUS	CLUCY	Bernardo Valadez	WI.O.	Control
				-	MC404	CE060	CE414	MC414	Roberto	M.S.	Mech. Design
									Carlos Fuentes		
							CE401	CE402		M.S.	Physics
										M.S.	Process Control
General and	CS401		ID400		EC400	CS402			Professors from		
Signature Courses	Cs400	CS403	CS404			HU400	HU401	HU402	Department.		

Legend for courses:

CODE	COURSE	CODE
MA400	Mathematics for University	MF402
CC400	Programming Methods I	MC402
MC400	Computer Aided Drawing	MC410
MA401	Differential Calculus	CE059
CC402	Programming Methods II	MC404
FI400	Physics I	CE061
MA402	Integral Calculus	MC407
FI401	Physics II	CE060
MA403	Numerical Methods	CE062
MA404	Probability	CE063
MA407	Differential Equations	CE414
FI402	Physics III	CE401
MA406	Multivariable Calculus	CE065
CE058	Introduction to Mechatronics	CE064
MF400	Materials Properties	MC414
MF401	Materials Manufacturing	CE402

CODE	COURSE
MF402	Computer Based Manufacturing
MC402	Mechanics of Materials
MC410	Dynamics of Mechanisms
CE059	Electronic Systems I
MC404	Introduction to Design
CE061	Automation and Industrial Robotics
MC407	Electro-Pneumatics and Hydraulics
CE060	Electronics Systems II
CE062	Programmable Controllers
CE063	Sensors and Actuators
CE414	Power Electronics
CE401	Computer Networks
CE065	Microcontroller Based Design
CE064	Mechatronics Prototype Modeling
MC414	Heat Transfer
CE402	Computer Networks Applications

6. Curricular mapping.

			ENGINEERIN	G BACHELOR LEARNING C	'S PROGRAM OUTCOMES	S STUDENT	BACHELOR'S	IN MECHATRO	NICS ENGINEER OUTCOMES	NG STUDENT
	CURRICULAR ELEMENTS		SLO_ENG1	SLO_ENG2	SLO_ENG3	SLO_ENG4	SLO_IMECA1	SLO_IMECA2	SLO_IMECA3	SLO_IMECA4
CODE	COURSE	SEMESTER	LEVEL	LEVEL	LEVEL	LEVEL	LEVEL	LEVEL		LEVEL
MA400	Mathematics for University	1	SU	SU						
CC400	Programming Methods I	1	SU	SU	SU			SU	SU	SU
MC400	Computer Aided Drawing	1	SU	SU	SU				SU	
MA401	Differential Calculus	1	SU	SU						
CC402	Programming Methods II	2	ME	SU	SU	SU	SU	SU	SU	SU
FI400	Physics I	2	SU	SU	SU				SU	SU
MA402	Integral Calculus	2	ME	SU						
FI401	Physics II	3	ME	SU	SU				SU	
MA403	Numerical Methods	3	ME	SU	ME					
MA404	Probability	3	ME	SU						
MA407	Differential Equations	4	ME	SU					011	
FI402	Physics III	4	ME	ME	SU	SU	50	SU	SU	
MA406	Multivariable Calculus			50	011		011	011	011	011
CE058	Introduction to Mechatronics	5	50	50	50	50	50	30	50	50
MF400	Materials Properties	1	50	50 ME	50	50	50 ME		50	ME
ME401	Computer Record Manufacturing	2		NIE SO	50	ME			30 ME	80
MC402	Computer Based Manufacturing	3		ME	ME					50
MC402	Dynamics of Mashaniama	4	SO SO	ME	80	ME	ME		ME	50
CE050	Electronic Systems I	4	ME	ME	ME	ME	ME	ME	ME	
MC404	Introduction to Design	5	ME	ME	ME	SO	ME		ME	ME
CE061	Automation and Industrial Robotics	5	SO SO	SO SO	SO SO	50	SO 80	\$0	SO SO	ME
MC407	Electro-Pneumatic ans Hydraulic Systems	6	ME	ME	ME	50	50	ME	ME	mc.
CE060	Electronic Systems II	6	ME	ME	so	so	50	ME	ME	
CE062	Programmable Controllers	6	ME	so	so	so	so	50		
CF414	Power Electronics	7	ME	ME	ME	so	so	ME	ME	
CE063	Sensors and Actuators	7	SO	ME	ME	SO	SO	SO	ME	SO
CE401	Computer Networks	7	ME	ME	SO	SO		SO		
CE402	Computer Network Applications	8	SO	SO	SO	SO		SO		
CE065	Microcontroller Based Design	8	SO	SO	SO	SO	SO	SO	SO	SO
CE064	Mechatronics Protoype Modelling	8	SO	SO	SO	SO	SO	SO	SO	SO
MC414	Heat Transfer	7	ME	SO	ME	SO	SO			SO
	CO-CORRICULAR ELEMENTS	SEMESTERS	LEVEL	LEVEL	LEVEL	LEVEL	LEVEL	LEVEL		LEVEL
CETYS Expos i	University College of Engineering Projects n each Campus	2,4,6,8	SU, ME, SO	SU, ME, SO	SU, ME, SO	SU, ME, SO	SU, ME, SO	SU, ME, SO		SU, ME, SO
CETYS in each	University College of Enginerering Simposiums Campus	1,3,5,7	SU	SU	SU	SU, ME, SO	SU	SU		SU
Scholar	ships awarded by external institutions	1,2,3,4,5,6,7,8	SU	SU	su	SU, ME, SO	SU, ME, SO	SU, ME, SO		SU, ME, SO
Esterne	1	40045070	SU, ME, SO	SU, ME, SO	SU, ME, SO	SU, ME, SO	SU, ME, SO	SU, ME, SO		SU, ME, SO
Externa	rengineering competitions	1,2,3,4,5,6,7,8								
Profess	ional Practice	6,7,8	SU, ME, SO	SU, ME, SO	SU, ME, SO	SU, ME, SO	ME, SO	ME, SO		ME, SO
Social S	Sevice	6,7,8	SU, ME, SO	SU, ME, SO	SU, ME, SO	SU, ME, SO	ME, SO	ME, SO		ME, SO
Student	Exchange	6,7,8	SU, ME, SO	SU, ME, SO	SU, ME, SO	SU, ME, SO	ME, SO	ME, SO		ME, SO
CENEV	ALEGEL Examination	8	SU, ME, SO	SU, ME, SO	SU, ME, SO	SU, ME, SO	ME, SO	ME, SO		ME, SO
		· · · · ·	l	1	1	l			I	1

Legend for levels used for curricular mapping:

SU ("SUFICIENTE") = SUFFICIENT. **ME** ("*MEJORABLE*") = IMPROVABLE. **SO** ("SOBRASALIENTE") = OUTSTANDING.

Legend for Student	Learning Outcomes:
--------------------	--------------------

Engineering Bachelor's Programs.	Bachelor's in Mechatronics Engineering
The student of a CETYS University Bachelor's in Engineering	The student of the Bachelor's in Mechatronics Engineering program will
Program will	
SLO ENG1: correctly apply to engineering, the tools provided by	SLO IMECA1: design, implement and maintain the control and/or the
the basic sciences, such as physics, calculus, probability, statistics	automation systems in a manufacturing system by the usage of sensors,
and programming to the solution of diverse problems.	programmable logic controllers and actuators.
SLO_ENG2:design analytic and functional models, quantitatively	SLO_IMECA2: integrate computer systems to supervise, data
and qualitatively, for the analysis and improvement of systems for	acquisition and production control in manufacturing ambiances.
diverse applications.	
SLO ENG3: effectively use software tools and technologies to	SLO MECA3: design, build, install and program robots for
build solutions to engineering problems.	manufacturing.
SLO_ENG4: effectively design and manage projects.	SLO_MECA4: design, select materials, machining and test
	mechanisms using numerical control equipment or basic metal-mechanic
	shop equipment.

SLO_ENG5: ... (Clear and effective communication in English) ... be able to express his ideas clearly and with an appropriate language, in a verbal, written, and visual way in English.

This learning outcome is developed primarily via the co-curricular ESL program that all students must go through, and which is managed by the English Language Center. Some curricular courses contribute to the improvement of this learning outcome, like Advance Communication in English and selected courses from 5th semester onward.

7. Assessment plan.

Based on the Assessment Plan for CETYS University System:

Currently, the following actions have been done, with regards to the Bachelor's in Mechatronics Engineering Program, with the participation of faculty members from the Academy of Mechatronics Engineering:

- 1) Formulation of the Mission and Vision.
- 2) Formulation of the Educational Objectives.
- 3) Formulation of Student Learning Outcomes.
- 4) Curricular Mapping.

The assessment components that are currently in the process of being defined, but have not yet been developed and therefore have not been implemented are:

- a) Definition of assessment tools for student learning to be used in the assessment of the Student Learning Outcomes.
- b) Identification of key courses where evidence of student learning can be gathered.
- c) Systematic gathering of evidence of learning and the analysis and organization of the evidence.